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Abstract The division problem consists of allocating a given amount of a
homogeneous and perfectly divisible good among a group of agents with single-
peaked preferences on the set of their potential shares. A rule proposes a vector of
shares for each division problem. The literature has implicitly assumed that agents
will find acceptable any share they are assigned to. In this article we consider the
division problem when agents’ participation is voluntary. Each agent has an idiosyn-
cratic interval of acceptable shares where his preferences are single-peaked. A rule
has to propose to each agent either to not participate or an acceptable share because
otherwise he would opt out and this would require to reassign some of the remaining
agents’ shares. We study a subclass of efficient and consistent rules and characterize
extensions of the uniform rule that deal explicitly with agents’ voluntary participation.

G. Bergantifios (B<)

Research Group in Economic Analysis, Facultade de Econdmicas, Universidade de Vigo,
36310 Vigo (Pontevedra), Spain

e-mail: gbergant@uvigo.es

J. Massé

Departament d’Economia i d’Historia Economica and CODE, Universitat Autonoma de Barcelona,
08193 Bellaterra (Barcelona), Spain

e-mail: jordi.masso@uab.es

A. Neme

Instituto de Matemadtica Aplicada de San Luis, Universidad Nacional de San Luis and CONICET,
Ejército de los Andes 950, 5700 San Luis, Argentina

e-mail: aneme @unsl.edu.ar

@ Springer



372 G. Bergantifios et al.

1 Introduction

The division problem consists of a set of agents that have to share an amount of an
homogeneous and perfectly divisible good. Each agent has single-peaked preferences
on the set of his potential shares; namely, there is an amount of the good (the peak
of the agent) that is his most-preferred share and in both sides of the peak the prefer-
ence is monotonic, decreasing at its right and increasing at its left. Since preferences
reflect idiosyncratic characteristics of the agents, they have to be elicited by a rule
that maps each division problem (a set of agents, a preference profile of declared list
of single-peaked preferences, one for each agent, and the amount of the good to be
allocated) into a vector of shares. But in general, the sum of the peaks will be either
larger or smaller than the total amount to be allocated. A positive or negative rationing
problem emerges depending on whether the sum of the peaks exceeds or falls short the
fixed amount. Rules differ from each other in how this rationing problem is resolved
in terms of incentives, efficiency, fairness, monotonicity, consistency, etc.

There are many examples of allocation problems that fit with this general descrip-
tion. For instance, a group of agents participate in an activity that requires a fixed
amount of labor (measured in units of time). Agents have a maximal number of units
of time to contribute and consider working as being undesirable. Suppose that labor
is homogeneous and the wage is fixed. Then, strictly monotonic and quasi-concave
preferences on the set of bundles of money and leisure generate single-peaked pref-
erences on the set of potential shares where the peak is the amount of working time
associated to the optimal bundle. Similarly, a group of agents join a partnership to
invest in a project (an indivisible bond with a face value, for example) that requires a
fixed amount of money (neither more nor less). Their risk attitudes and wealth induce
single-peaked preferences on the amount to be invested. In both cases, it is required
that a rule solves the rationing problem arising from a vector of peaks that do not add
up the needed amount.

However, in many applications (like those described above), agents’ participation
cannot be compulsory. For instance, to participate agents may have to pay a fixed cost
or a fee which could make smaller and larger shares—the less preferred ones given
their single-peaked preferences—unacceptable. Then, each agent will have an inter-
val of acceptable shares whose elements are preferred to opt out. Therefore, the rule
cannot propose unacceptable shares to agents. In this article we study rules that solve
the rationing problem when agents’ participation is voluntary. We call an allocation
problem of this type, a division problem with voluntary participation (a problem, for
short). Now, in a problem each agent’s preferences are characterized by an interval of
acceptable shares where preferences are single-peaked. Only shares inside this inter-
val are considered to be acceptable. A rule will have to propose, for each problem,
a vector where each agent either does not participate or else receives an acceptable
share. Consequently, the vector where no agent participates (and the good is disposed
of completely) is a feasible allocation. Hence, our model applies to situations involv-
ing a perfectly divisible good that can either be disposed of completely or be allocated
completely.

In a related paper Cantala (2004) considers agents’ voluntary participation in the
public good counterpart of the division problem with single-peaked preferences. He
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studies a model in which each agent can opt out from consuming the public good if
its chosen level falls outside of his set of acceptable levels. An important difference
between Cantala (2004) and our private good model is that when an agent opts out and
does not consume the public good, the level of the public good may remain unchanged
while in the private good case the shares of some of the remaining agents have to be
redefined.

We are interested in rules that satisfy a set of desirable properties. First, efficiency.
A rule is efficient if it always selects Pareto optimal allocations. Efficiency guarantees
that in solving the rationing problem (either positive or negative) no amount of the
good is wasted. Second, consistency. A rule is consistent if the proposed shares at a
given problem coincide with the shares that the rule would propose at any smaller
problem obtained after that a subset of agents, agreeing with the amounts the rule has
assigned to them, leave the society taking with them their already assigned shares.
Consistency guarantees that, in order to follow the rule’s prescription at the reduced
problem, the remaining agents do not have to reallocate their shares. Third, individual
rationality from equal division. Suppose that we assign to each agent his smallest
acceptable share. The rest is divided as equally as possible under the condition that no
agent receives more than his largest acceptable share. A rule satisfies this property by
choosing a Pareto improvement from the previous allocation.! Individual rationality
from equal division embeds to the rule a minimal egalitarian principal only broken for
two reasons. First, to keep binding the restrictions derived from the requirement that
agents have to receive acceptable shares and second, to admit Pareto improvements
from this egalitarian allocation. In contrast with the division problem when all shares
are acceptable,” we show that when agents’ participation is voluntary the fundamental
properties of strategy-proofness, efficiency, anonymity and one-sided resource-mono-
tonicity are incompatible. Specifically, there is no rule satisfying strategy-proofness.
Besides, efficiency is also incompatible with either anonymity or one-sided resource-
monotonicity. In Sect. 3.2 we give formal proofs of these incompatibilities.> We pro-
ceed by leaving aside incentive issues and by focusing on the class of efficient and
consistent rules that are individually rational from equal division.

Before moving to the general description of our results we want to stress a funda-
mental attribute of rules when applied to division problems with voluntary participa-
tion. Fix a problem (a set of agents, their preferences, and the amount of the good to
be allocated). A rule has to make two choices. First, it has to select a subset of agents
(a coalition) among whom the good will be allocated. This coalition has to be admis-
sible for the problem: it should be possible to allocate the total amount of the good
among its members without violating their participation constraints. Second, and given
this chosen coalition (if non-empty), the rule has to select (among potentially many) a

1 See Sonmez (1994) for an analysis of rules satisfying this property in the context of division problems
with compulsory participation.

2 In this setting Sprumont (1991) characterizes the uniform rule as the unique rule satisfying efficiency,
anonymity (the names of the agents do not play any role), and strategy-proofness (truth-telling is a dominant
strategy in the direct revelation game induced by the rule).

3 In contrast again, Barbera et al. (1997) shows that when agents’ participation is compulsory the class of
strategy-proof and efficient rules is extremely large.
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particular share allotted to each of its members. When participation is compulsory rules
disregard the first issue and always select the grand coalition. In this setting the uniform
rule has emerged as the most appealing one.* At each division problem with compul-
sory participation the uniform rule tries to allocate the amount of the good among all
agents as equally as possible, keeping the efficiency constraints binding. Hence, all
agents are constrained in the same way; i.e., all agents receive either a share below
their peaks (when the sum of all their ideals is larger than the total amount) or a share
above their peaks (when the sum of all their ideals is smaller than the total amount).

Our results axiomatically identify three nested classes of rules. In all cases the set
of axioms will single out a unique way of allocating the amount of the good among the
members of an admissible chosen coalition. The classes will differ precisely on how
their elements choose the admissible coalition. This unique allotting way consists of
the following natural extension of the uniform rule. Fix a problem. If the empty coa-
lition is the unique admissible one, no agent participates. Otherwise, take the chosen
non-empty admissible coalition. Then the allocation of the good among its members
can be described as a two-step procedure. First, assign to each agent in the coalition his
smallest acceptable share. The remainder is assigned by adding uniformly the same
amount to every agent in the coalition. If the sum of the peaks exceeds the amount to be
allocated then the rule stops adding to those agents whose peak is reached, and keeps
adding uniformly to the rest. Observe that in this case the remainder will eventually
be exhausted before all peaks are reached. If the sum of the peaks is smaller than the
amount to be allocated then the rule also keeps adding uniformly to all agents, and
stops adding only to those agents whose largest acceptable share is reached, and keeps
adding uniformly to the rest. Observe now that since the coalition was admissible the
remainder will eventually be exhausted before reaching all largest acceptable shares.
We call any rule satisfying this allotment procedure an extended uniform rule. There
are many because at many problems there are many admissible coalitions. Hence,
extended uniform rules differ only on the choice of the subset of agents among whom
the amount of the good is allocated.

Theorem 1 characterizes the class of efficient, consistent and individually rational
from equal division rules as the subset of extended uniform rules that select the admis-
sible coalition by choosing coherently the full set of agents whenever it is possible.
Theorem 2 characterizes the subclass of rules that, in addition to the previous prop-
erties, satisfy an independence of irrelevant alternatives like property (that we call
independence of irrelevant coalitions). This class consists of the subset of extended
uniform rules that at each problem choose the admissible coalition by maximizing a
given monotonic order on the set of all finite coalitions. Theorem 3 characterizes the
smaller subclass of rules that in addition to efficiency, consistency, and individually
rationality form equal division also satisfy order priority with respect to a given order
among individual agents. This class consists of the subset of extended uniform rules
that at each problem choose the admissible coalition by selecting lexicographically

4 See Ching (1992, 1994), Schummer and Thomson (1997), Sénmez (1994), Sprumont (1991), Thomson
(1994a, 1995, 1997), and Weymark (1999) for alternative characterizations of the uniform rule in the divi-
sion problem. In the surveys on strategy-proofness of Barbera (1996, 2001, 2010), Jackson (2001) and
Sprumont (1995) the division problem and the uniform rule plays a prominent role.

@ Springer



The division problem with voluntary participation 375

according to the given order. We also show that in all three characterizations the axioms
are independent.

The article is organized as follows. In Sect. 2 we describe the model. In Sect. 3 we
define several properties that a rule may satisfy and show some basic incompatibilities
among them. In Sect. 4 we define extended uniform rules. In Sect. 5 we present the
main results of the article. In Sect. 6 we conclude with a discussion and some final
remarks. Three appendices at the end of the article collect the proofs of the three
theorems.

2 The model

Let r > 0 be a fixed amount of a homogeneous and perfectly divisible good. A finite
set of agents is considering the possibility of dividing # among a subset of them, to
be determined according to their preferences. Since we will be considering situations
where the amount of the good ¢ and the finite set of agents may vary, let N be the set of
positive integers and let A be the family of all non-empty and finite subsets of N. The
set of agents is then N € N with cardinality n. In contrast with Sprumont (1991), we
consider situations where each agent has the right to opt out of the division problem.
A feasible allocation is that no agent participates and the good is not divided at all.
Observe that we are considering a perfectly divisible good that can either be disposed
of completely or be allocated completely. We denote by NP the alternative of not par-
ticipating. Thus, and since each agent i cannot be forced to receive an unacceptable
share of the good, his preferences >; are defined on the set {NP} U [/;, u;], where
[/;,u;] € [0, +o0] is agent i’s interval of acceptable shares. We assume that >; is a
complete, reflexive, and transitive binary relation on {NP}U[/;, u;]. Given >; let >; be
the antisymmetric binary relation induced by >; (i.e., for all x;, y; € {NP} U [/;, u;],
x; >; y; if and only if y; > x; does not hold) and let ~; be the indifference relation
induced by >; (i.e., for all x;, y; € {NP} U [l;, u;], x; ~; y; if and only if x; >; y;
and y; > x;). We will also assume that >; is single-peaked on [/;, u;] and we will
denote by p; € [/;, u;] agenti’s peak. Formally, agent i’s preferences >; is a complete
preorder on the set {NP} U [/;, u;] that satisfies the following additional properties:
(P.1) there exists p; € [l;, u;] such that p; >; x; for all x; € [Il;, u;1\{pi};
(P.2) x; >; y; for any pair of shares x;, y; € [/;, u;] such that either y; < x; < p; or
pPi = Xxi <)Yi;
(P3) x; =; NP forall x; € (I;, u;);
(P4) if0 < u; < 4oothenl; ~; u;; and
(P5) ifu; = +oothenl; <; x; for all x; > [;.

A motivation for this kind of preferences is the following. Let agent i’s prefer-
ences be single-peaked and continuous on [0, 4-00). Now we add the option NP to
[0, 400) and there exist [;, u; with x; is strictly preferred to NP for all x; € (I;, u;).
The properties (P.1)—(P.5) are readily verified.

Observe that agent i’s preferences are independent of ¢ and are defined on the set
{NP} U [l;, u;], which will also be considered private information when we define
rules on the set of profiles. Conditions (P.1) and (P.2) state that >; is single-peaked on
[/;, u;]. Condition (P.3) follows from single-peakedness on [/;, u;] and the desirability
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of acceptable shares. Conditions (P.4) and (P.5) allow to interpret the interval of accept-
able shares [/;, u;] as a truncation of an original single-peaked preference on [0, +00),
where the truncation arises from the fact that agents may opt out (as in Cantala 2004).
In particular, (P.4) and (P.5) help to give sense to this truncation interpretation. Nev-
ertheless, all our results also hold in the domain of preferences satisfying (P.1), (P.2),
and (P.3).> Note that the domain of preferences satisfying conditions (P.1)—(P.5) is
large because we are admitting several possibilities. First, that agent i only has one
acceptable share (i.e., [; = p; = u;).% Second, that I; > 0 to reflect the case where to
receive a positive share agents may have to incur with a (potentially small) cost; for
example, the cost of writing a contract specifying the share of an indivisible bond or a
lottery ticket that each agent is entailed to. Third, that agent i perceives NP as receiv-
ing indeed the O share (in which case NP ~; [; if [; = 0). Fourth, that /; >; NP and
u; >; NP to admit the case that opting out were (perhaps lexicographically) worse for
the agent than staying and getting either /; or u;. Although we do not require any util-
ity representation of agents’ preferences, Fig. 1 illustrates three possible preferences
(represented by utility functions) satisfying properties (P.1)—(P.5).

From a preference >; of agent i we can associate a unique triple (/;, p;, u;). There
are many preferences of agent i with the same (I;, p;, u;); however, they differ only
on how two shares on different sides of p; are ordered while all of them coincide on
the ordering on the shares on each of the sides of p;. A profile =y= (>;)ien is an
n-tuple of preferences satisfying properties (P.1), (P.2), (P.3), (P.4), and (P.5) above.
Given a profile >y and agent i’s preferences z; we denote by (52, >n\{i}) the profile
where >; has been replaced by >’ and all other agents have the same preferences.
When no confusion arises we denote the profile >y by >.

A division problem with voluntary participation (a problem for short) is a triple
(N, =, t) where N is the set of agents, > is a profile and ¢ is the amount of the good
to be divided. Let P be the set of all problems. A situation where for all agents their
participation is compulsory and preferences are single-peaked on [0, +00) is known
as the division problem (see Ching and Serizawa 1998).

Let > be a profile. Define X (>) = [[;cy ({NP} U [/;, u;]). Observe that the set
X (>) depends on the profile > since, for each agenti € N, the set {NP} U [/;, u;] is
where i’s preferences are defined. For each x € X (>) denote the subset of agents that
participate (and receive an acceptable share) by S(x) = {i € N | x; € [l;, u;]}. Then,
the set of feasible allocations of problem (N, >, t) is

FAN, >, 1) = [x € X(>) |if S(x) #@then > xj= z].
jES()

Again, free disposal of the good is binary in the sense that either ¢ is completely
divided or it is not divided at all. Consequently, the set of feasible allocations is never
empty since the allocation x = (NP, ..., NP) € X (>) is always feasible (S(x) = @).

5 In this larger domain we could admit preferences >; with the property that p; >; [; = 0 >; u; or
Pi :li =0 >i uj.

6 The use of these degenerated preferences simplifies some proofs although our results would still hold if
we require that /; < u; (see the last section for a comment on this issue).
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cost of opting out

T

L

Fig. 1

Moreover, there are problems for which (NP, ..., NP) is the unique feasible alloca-
tion; for instance the problem (N, >, t) where N = {1,2},¢t = 10, and > and >»
are characterized by (I1, p1, u1) = (o, p2, u2) = (1, 2, 3).

A coalition S € N isadmissible (at profile > and amount ¢) if itis either empty oritis
possible to divide r among the agents in S according to their preferences; namely, coali-

@ Springer



378 G. Bergantifios et al.

tion S # O is admissible at (N, >, t) if there exists x € FA(N, >, t) such that S(x) =
S. Itis obvious that § # & is admissible if and only if >°; g/; <t < > ;cqu;j. We
denote by AC(N, >, t) the set of all admissible coalitions at (N, >, t). Namely,

AC(N,>,t) ={S C N | Sis admissible at (N, >, 1)}.

Observe that AC(N, >, t) is never empty because it always contains the empty
coalition.

A rule f assigns to each problem in P a feasible allocation in such a way that
f selects (NP, ..., NP) at (N, >, t) if and only if the empty coalition is the unique
admissible coalltlon at (N, >, t);thatis, f(N, >=,t) € FA(N, =, t)forall (N, >, 1) €
Pand f(N,>,t) = (NP,...,NP) if and only if AC(N, >, 1) = {@}. Hence, a rule
f can be seen as a systematic way of assigning to each (N, >, t) € P the two different
aspects of the solution of the problem. First, the admissible coalition S € AC(N, >, 1).
If § # @ we denote it by

(N, = 1)y=1{i e N| fi(N, =, 1) € [li, u;1}.

Obviously, if i ¢ cf (N, =, t) then f;(N, >=,t) = NP. Second, how the amount 7 is
divided among the members of cf(N, >,1);l.e.,

zjecf(N>t) f](N’_’t):t

We will later see that to identify rules satisfying appealing properties we may have
some freedom when choosing one among the set of admissible coalitions while the
properties will determine a unique way of dividing the amount of the good.

3 Properties of rules
3.1 Definitions

In this section, we define several properties that a rule may satisfy.

Rules require each agent to report a preference. A rule is strategy-proof if it is
always in the best interest of agents to reveal their preferences truthfully; namely, it
induces truth-telling as a dominant strategy in the direct revelation game generated
by the rule. Given a problem (N, >y, t) we say that agent i € N manipulates f at
profile >y via > if fi(N, (_l, =N\ 1) =i filN, =N, 1).

(STRATEGY- PROOFNESS) A rule f is strategy-proof if no agent can manipulate it at
any profile.

7 Note that we are requiring that, at any problem (N, >, t) for which there exists a non-empty coalition
S € AC(N, =, 1), (NP, ..., NP) isnotselected by f.Since we will only be interested on efficient rules, this
requirement will become relevant only when ¢ is equal to the sum of left or upper bounds of all non-empty
and admissible coalitions. To require that only in this case (i.e., when efficiency does not discriminate
between the empty and the non-empty admissible coalitions) the rule selects a non-empty coalition is for
technical reasons since it allows the use of easier arguments in some of the proofs.
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A-rule is anonymous if it only depends on the characteristics of the profile and not on
the name of the agents having the corresponding preference; that is, it is invariant with
respect to the index given to the agents. Let N € A be a setof agents, Ty : N — N be
a one-to-one mapping, and >y be a profile. Define the profile Ty (=n) = (=y@))ienN-
(ANONYMITY) A rule f is anonymous if for any N € N, any one-to-one mapping
Ty : N — N and any problem (N, >y, 1), fi(N, >N, 1) = fryi)(N, tn(=N), 1) for
alli e N.

A rule is efficient if it always selects a Pareto optimal allocation.

(EFFICIENCY) A rule f is efficient if for each problem (N, >, t) there is no feasible
allocation (y;)jey € FA(N, >, t) with the property that y; >; f;(N, >, ) for all
i€ Nandy; >; fj(N,>,t)forsome j € N.

Another property a rule may satisfy is related to its behavior when the amount ¢ to
be shared changes. One-sided resource-monotonicity only imposes conditions on the
rule whenever the change of the amount to be shared does not change the sign of the
rationing problem: if the good is scarce, an increase of the amount to be shared should
make all agents better off and if the good is too abundant, a decrease of the amount to
be shared should make all agents better off.®
(ONE- SIDED RESOURCE- MONOTONICITY) A rule satisfies one-sided resource-mono-
tonicity if for all two problems (N, >, 1), (N, >, ') € P with the property that either
1<t <YieypiorD>cypi <t <tthen fi(N,u,=,t") =; fi(N,u,>,1) forall
ieN.

A rule is consistent if the following requirement holds. Apply the rule to a given
problem and assume that a subset of agents leave with their corresponding shares.
Consider the new problem formed by the set of agents that remain with the same pref-
erences that they had in the original problem and the total amount of the good minus
the sum of the shares received by the subset of agents that already left. Then the rule
does not require to reallocate the shares of the remaining agents.

(CONSISTENCY) Arule f is consistent if for each problem (N, >y, t), each non-empty
subset of agents S C N, and eachi € §,

filN, =N, 1) = fi (S, 5.t =2 icef(Nomnons JiNs =N, t)) .

For the division problem with compulsory participation Sonmez (1994) proposed
the principle of individual rationality from equal division. A rule f is individually
rational from equal division if all agents receive a share that is at least as good as the
equal division share; namely, for each division problem (N, >, t),

filN, =, 1) =;

S|~

for all i € N. In a division problem equal division is always feasible but often is not
efficient. Precisely, this principle tries to make compatible equal division with effi-
ciency by allowing for Pareto improvements from the equal division share. Observe

8 See Thomson (1994b) and Sonmez (1994) for a discussion of one-sided resource monotonicity and
axiomatic characterizations using this property.

@ Springer



380 G. Bergantifios et al.

that in our setting the allocation (%, R ﬁ) may not be feasible and/or there may
not even exist a vector of shares at which all agents are better off than at equal divi-
sion. Thus, when agents’ participation is voluntary, this property is too strong (no
rule satisfies it) and it cannot be applied directly. However, and since we think that
its content is appealing we suggest to use the same principle as follows. Assume that
in the problem (N, >, ) the coalition N is admissible. Preliminarily, assign to each
agent i the amount /; (which is possible since N is admissible). The remaining amount
r=> jen Lj hasstill to be allocated, but again, by feasibility, each agent i must receive
overall at most u;. Then, allocate the remaining amount t — > jen lj as equally as
possible, but making sure that no agent i receives additionally more than u; —/;. Each
agent must receive a share at least as good as the previous allocation. Formally,
(INDIVIDUAL RATIONALITY FROM EQUAL DIVISION) A rule f is individual ratio-
nal from equal division if for each problem (N, >, t) for which N is an admissible
coalition,

fi(N, =, 1) > l; + min{e, u; — I;}

foralli € N, where o € R satisfies > ;. minf{o, u; —l;} =1 =3y 1;.°

The next two properties refer explicitly on how the rule chooses the admissible
coalition.

A rule satisfies independence of irrelevant coalitions if the following requirement
holds. Consider two problems where the set of admissible coalitions of the first one is
contained in the set of admissible coalitions of the second one. Assume that the coa-
lition chosen by the rule in the second problem is admissible for the first one. Then,
the rule chooses the same coalition in the two problems. As in many other settings,
this principle adopts a revealed preference point of view: if something is chosen in a
set (and thus, it is revealed as being as preferred to all other alternatives in that set)
and the set becomes smaller but still contains what has been chosen, the new choice
should not change.

(INDEPENDENCE OF IRRELEVANT COALITIONS) A rule f satisfies independence of
irrelevant coalitions if for any two problems (N, >,t) and (N’, >’,t") such that
AC(N', =", 1) ¢ AC(N, =, 1) and ¢/ (N, =, 1) € AC(N’, =/, ') then,

N = 1)y =l (N, =, ).
An order o is a one-to-one mapping o : N — N. A rule satisfies order priority

with respect to o if agent i has more rights to be in the coalition sharing ¢ than any
agent that goes after him according to ¢.'% Namely,

9 Note that in the division problem with compulsory participation our version of the principle says that
filN, =, 1) =; % for all i € N. Observe that in the voluntary participation context there are other alter-
native and natural ways of formalizing the idea of individual rationality from equal division. In Sect. 6 we
describe the one that uses as reference allotment the one obtained by starting at the vector of upper bounds
decreases uniformly agents’ shares as long as lower bounds are not reached.

10 Priority rules appear in many settings where to treat agents equally is unfeasible. This very asymmet-
ric rules are still interesting because they can be used to achieve ex-ante symmetry by choosing random
mechanisms whose supports are priority rules.
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(ORDER PRIORITY) A rule f satisfies order priority with respect to o if for each
problem (N, =, ¢) such that i ¢ ¢/ (N,>,1) and ¢/ (N, =, )N {j € N | o(j) >
o (i)} # @ then, there is no admissible coalition containing ({i} U {j € N | o (j) <
c@PNc/ (N, =, 1).

Remark 1 Let o be an order and assume that f satisfies order priority with respect to
o. Then, f satisfies independence of irrelevant coalitions.

3.2 Some basic incompatibilities

Proposition 1 below shows that strategy-proofness is a very strong requirement when
agents’ participation is voluntary. The reason is that the rule has to depend not only
on the agents’ peaks but also on their intervals of acceptable shares; this makes it too
vulnerable to manipulation. Thus, there is no strategy-proof rule. Furthermore, Prop-
osition 1 also states that efficiency is incompatible with either anonymity or one-sided
resource-monotonicity.

Proposition 1

(1.1) There is no strategy-proof rule.

(1.2) There is no efficient and anonymous rule.

(1.3) There is no efficient and one-sided resource-monotonic rule.

Proof To prove (1.1) let N = {1, 2} be the set of agents, r = 10 and consider any
profile >= (>1, >2) with (I1, p1,u1) = (2, p2,uz) = (4,6,9). Since the only
admissible coalition is N, N is chosen. Thus, either f1(N, >,t) < 6 or fo(N, >, 1)
< 6. Assume, for instance, that f{(N, >, t) < 6. Now let agent 1 report any pref-
erence > with (I}, p},u}) = (6,6,6). In the problem (N, (=}, =2), 1), N is the
only admissible coalition and hence N is chosen. Since the only feasible allocation is
(6,4), fi(N, (z’l, >2),t) = 6 >1 f1(N, >, t), which means that f is not strategy-
proof.

To prove (1.2), let N = {1, 2} be the set of agents, t = 10 and consider any profile
== (>1, =2) with (/;, pi, u;) = (8,9, 10) fori = 1, 2. Since AC({1, 2}, >, 10) #
{@}, f({1,2},>,10) # (NP, NP). Hence, either f({1, 2}, >,10) = (NP, 10) or
f{1, 2}, >, 10) = (10, NP), which means that f is not anonymous.

To prove (1.3), let (N, >, t) be such that N = {1, 2, 3}, (/;, pi, u;) = (5, 6, 8) for
alli € N, and r = 12. By efficiency, two agents receive 6 and the other agent receives
0. Assume without loss of generality that f(N, >, t) = (6,6, 0). Let (N, >, t") be
such that#’ = 15. By efficiency, two general cases are possible. First, agent i] receives
X, agent ip receives 15 — x, and agent i3 receives 0, in which case f violates one-sided
resource-monotonicity because agent 1 or agent 2 receives a share that is strictly worst
than 6. Second, each agent receives 5, in which case f violates one-sided resource-
monotonicity because agents 1 and 2 are strictly worst off. O

4 The uniform rule and some of its extensions

The uniform rule (Sprumont 1991) has played a central role in the division problem
with compulsory participation because it is the unique rule satisfying different sets of
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desirable properties. For instance, Sprumont (1991) shows that the uniform rule is the
unique rule satisfying strategy-proofness, efficiency and anonymity.

The uniform rule U is defined as follows: for each division problem (N, >, ) and
foreachi € N,

min{B, p;i} if 2 ey pj =t

Ui(N, = 1) = [max{ﬁ’ SIS

where f is the unique number satisfying > jeN Uj(N,>,t) = t. Namely, U tries
to allocate the good as equally as possible, keeping the efficient constraints binding:
if ZjeN pj = tthen Uj(N,>=,1) < p; foralli € N, and if ZjeN pj < t then
Ui(N,>,t) > p; foralli € N.

Observe that when applied to division problems with voluntary participation U is
not a rule since at some problems it may choose non-feasible allocations. In the rest
of this section we extend the uniform rule to our environment. We do it in two steps.
First, we extend the uniform rule only to the subclass of problems where the grand
coalition is admissible and the lower bounds of agents’ intervals of acceptable shares
are equal to zero. Let (N, >, t) be a problem with the properties that N € AC(N, >, 1)
and [; = Oforalli € N. Then, define F' at (N, >, t) as follows: foralli € N,

min(B, p;) if Y jen by 21

FW, 2,1 = [min{max{ﬂ,pi},ui} it o Py <1,

where $ is the unique number satisfying > jen Fj(N, >, t) = t. Notice that when
> jen Pj = t (the upper bounds of the participation intervals do not play any role) F
coincides with the uniform rule. When > jen Pj <1 some of the upper bounds may
be binding, so F' makes sure that, for all i € N, max{g, p;} is never larger than u;.
But F is not a rule itself because it only applies to a subclass of problems. To define
arule f that extends the egalitarian principle behind the uniform rule (by keeping the
bounds imposed by efficiency and voluntary participation), select for each problem
(N, >, t) an admissible coalition. If the empty set is the unique admissible coalition
at (N, >=,1), set f;(N,>,t) = NP for all i € N. Otherwise, let cf(N, >, t) be the
(non-empty) admissible coalition (chosen by f) among whom 7 is allocated in two
steps.'! First, preliminarily assign to each agent in the chosen coalition ¢/ (N, =, 1)
the lower bound of his interval of acceptable shares, and then apply the rule F to
the adjusted problem where the set of agents is ¢/ (N, >, t) and their preferences are
0-normalized. Formally, let (N, >, ¢) be a problem and let S be one of its non-empty
admissible coalitions. The adjusted problem (S, (zlj) jes,t— > jes 1) is the problem
where § is the set of agents, and for each i € S, zé is characterized by the triple

' Remember that for a given problem there may be many admissible coalitions; hence, to fully describe
the rule f we will have to specify how cf(N, >, t) is chosen by f. But we will deal with this selection
later on.
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0, pi — Il;, u; — [;) and given any pair x;, y; € [0, u; — [;], x; zf y; if and only if
xi + 1 =i yi +1;;1.e, zﬁ translates >; to the left by subtracting li.lz

(EXTENDED UNIFORM RULE) We say that f is an extended uniform rule if for all
(N,>,t) e Pandalli € N, f;(N, =,t) = NP whenever AC(N, >, t) = {&} and
otherwise,

Ji(N, =, 1)
— ll+Fl(Cf(Na :5t)7(zlj)]ecf(N,Z’[)at_z‘/e(;f(N’Z’[) l]) ifl ECJ(N’ :vt)
NP ifi ¢ c/(N,=,1),

where ¢/ (N, >,1) € AC(N, =, t) and ¢/ (N, =, 1) # @.

Observe again that there are many problems with more than one admissible coali-
tion and hence, there are many extended uniform rules. We exhibit an example of a
rule in this family by describing a procedure to select, for each problem, an admissible
coalition. This procedure is based on the idea of selecting the admissible coalition by
given priority to agents according to a fixed order o.

To roughly describe the procedure assume momentarily that N = {1, ..., n} and
o(i) =i foralli € N.If the empty coalition is the unique admissible coalition at
(N, =, t) then, choose the empty coalition and the rule assigns NP to each agent. If
there are non-empty admissible coalitions at (N, >, ) preselect first those coalitions
containing agent 1; if there are several, keep only those containing also agent 2, and so
on. If there are no admissible coalitions containing agent 1, preselect those coalitions
containing agent 2; if there are several, keep only those containing also agent 3, and
SO on.

The formal definition is recursive and depends on the one-to-one mapping o :
N — N. Given N € N and 1 < k < n let (abusing a bit the notation) o l(k) =i
be the agent in N such that |{j € N | o(j) < o(i)}| = k; namely, o~ 1(1) is the
agent that goes first according to the order o, and in general, for 1 < k < n, o ! (k)
is the agent that has exactly k — 1 agents before him according to o. Thus, given o,
we define the extended uniform rule F¢ as follows. If AC(N, >, 1) = {J} then set
FZ(N,>,t) = NP forall i € N. Assume now that the set of admissible coalitions
AC(N, =, t) for problem (N, >, t) contains at least one non-empty coalition.

e StageO (initialization): Given AC(N, >, t), set XOEAC(N, >, t)and goto Stage 1.
e Stage 1 (definition of X!): Given X°, the output of Stage 0.

1. Ifforeach S € X°, 07 !(1) ¢ S then, set X' = X and go to Stage 2.
2. Ifthere exists S € X such thato—1(1) € S then, set X! = {S € X° | o~ 1(1)
€ S} and go to Stage 2.
e Stage k (definition of X*): Given X*~!, the output of Stage k — 1.

1. Ifforeach S e X*1, a’l(k) ¢ S then, set X% = xk1and goto Stage k + 1.
2. If there exists S € X¥~! such that 01 (k) € S then, set XK = {S € XK1 |
o~ (k) € S} and go to Stage k + 1.

12 See Herrero and Villar (2000) for general translations of preferences used to define the axiom of Agenda-
independence.
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The procedure stops at Stage n with X" = X" (N, =, t) having a unique coalition.
Observe that X" (N, =,t) € AC(N, =, t). Then, the o-extended uniform rule F° is
the extended uniform rule such that, for each (N, >, 1) € P, Fi" (N, >,t) = NP for
alli € N whenever AC(N, >, 1) = {@} and cF? (N, >=,t) = X" (N, >, t) otherwise.

5 Results

We are now ready to describe and state the main results of the article. They axiomati-
cally identify three nested subclasses of extended uniform rules. All of them use the
same principle to allocate the amount of the good (the same one used by the uniform
rule for division problems with compulsory participation) but differ on how to select
the admissible coalition. The larger class imposes only two restrictions on the choice
of the admissible coalition. First, it chooses the full set of agents whenever it is admis-
sible. Second, it chooses the coalition coherently. The three axioms characterizing this
class are efficiency, consistency and individual rationality from equal division. The
intermediate class consists of those extended uniform rules that choose the admissible
coalition according to a priority relation among all groups of agents that comes from
a given monotonic order. This priority ordering on A/ has to be monotonic in a double
sense. First, adding an agent to a given set gives priority to the larger set. Second, if
a set S has priority over a set T then the priority is maintained after adding a player
i ¢ SUT to both sets. This class is identified by the same axioms characterizing
the larger class plus the property of independence of irrelevant coalitions. Finally,
the smaller class consists of those extended uniform rules that choose the admissible
coalition according to an order o on N that gives priority directly to agents; namely,
it is the class of all o-extended uniform rules that have been defined in the previous
section. This class consists of all efficient, consistent, and individually rational from
equal division rules that satisfy order priority with respect to some o. We now turn to
the formal statements of the three results.

Theorem 1 characterizes all efficient, consistent, and individually rational from
equal division rules as a subclass of extended uniform rules.

Theorem 1 Let f be a rule. Then, f is efficient, consistent, and individually rational
from equal division if and only if f is an extended uniform rule with the properties
that, for all (N, >=,t) € P,

(1.a) cf(N, >,1) = N when N is an admissible coalition at (N, >, t).
(Lb) ¢/ (S, =5, 1= icornmns [itN, =, 0) = ¢/ (N, =, 0)NS foreach S C N.

Proof See Appendix 1. O

There are many extended uniform rules that are inefficient, inconsistent and do not
satisfy individual rationality from equal division because the choice of the admissible
coalition may be extremely arbitrary. Conditions (1.a) and (1.b) in Theorem 1 precisely
select those extended uniform rules that satisfy the three desirable conditions. Observe
that consistency of a rule is an invariance property about the shares received by the
remaining agents after a subset of agents leave the problem with their allotment. In
contrast, condition (1.b) in Theorem 1 is a sort of consistency requirement on ¢/ that
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does not impose any constraint on agents’ shares. In particular, (1.b) says that, for any
problem (N, =, 1),if S C ¢/ (N, =, 1) thenc/ (S, =5, 1= corv.wips iV, =, 1)
=S.

Theorem 2 characterizes all efficient, consistent, and individually rational from
equal division rules that satisfy independence of irrelevant coalitions as the subclass
of extended uniform rules with the property that they choose the admissible coalition
according to a monotonic order given directly to coalitions (which is not necessarily
induced by a unique order of agents). Formally, let p be a liner order on \V; i.e., p is
a complete, antisymmetric and transitive binary relation on . We say that the order
p is monotonic if:

(i) forallSe Nandi ¢ S,(SU{i})pS, and
(ii)) forall S, T e Nandi ¢ SUT, SpT implies (S U {i}Dp(T U {i}).

Theorem 2 Let f be a rule. Then, f is efficient, consistent, individually rational from
equal division and satisfies independence of irrelevant coalitions if and only if f is an
extended uniform rule with the property that there exists a monotonic order p on N
satisfying the property that for all (N, >,t) € P,

(2.a) ¢/ (N, =,0)pS forall S € AC(N, =, )\c/ (N, =, 1).
Proof See Appendix 2. O

Theorem 3 characterizes, for each order o on N, the extended uniform rule F¢ as
the unique efficient, consistent, and individually rational from equal division rule that
satisfies order preservation with respect to o.

Theorem 3 Let f be a rule and let o be an order. Then, f is efficient, consistent,

individually rational from equal division and satisfies order priority with respect to o
ifand only if f = F°.

Proof See Appendix 3. O

Since, by Remark 1, order priority with respect to o implies independence of irrele-
vant coalitions, it follows that the class of rules characterized in Theorem 3 is a subset
of the class of rules characterized in Theorem 2.

Before finishing this section we want to point out that in each of the three charac-
terization theorems the set of axioms are independent. See Appendices A1.3, A2.2,
and A3.2 for the examples showing their independence.

6 Discussion and final remarks

First, the (large) class of extended uniform rules identified in Theorem 1 satisfy also
other appealing properties.

A rule satisfies the property of independence of irrelevant agents if at a given prob-
lem an agent either receives the zero share or does not participate then, at the problem
where the agent is not present anymore, all other agents receive the same share they
had received in the original problem. Formally,
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(INDEPENDENCE OF IRRELEVANT AGENTS) A rule f is independent of irrelevant
agents if for each problem (N, >y, t) such that either f;(N, >y,t) = 0 or f;(N,
>N, t) = NP for some agenti € N then, f;(N, >y, 1) = fj(N\{i}, =n, 1) for
all j € N\{i}.

A rule satisfies non-bossiness if one agent receives the same share at two problems
that are identical except for the preferences of this agent then, the shares of all the
other agents also coincide at the two problems. Formally,

(NON- BOSSY) Arule f is non-bossy if for each problem (N, >, t), each agenti € N,
and each i’s preferences > > such that f; (N, (=i, =n\(i}), ) = fi(N, (_l, >=N\{i})s 1)
then, f; (N, (=i, Zn\(i}) l) = fi(N, (=}, =\ t) forall j € N\{i}.

A rule satisfies maximality if the set of agents that receive a positive share consti-
tutes (according to set-wise inclusion) a maximal admissible coalition.
(MAXIMALITY) A rule is maximal if the following holds. Let S be an admissible coa-
lition for the problem (N, >, r) and assume that Zjes fi(N,>,t) =tand 0 < [; for
alli € N\S. Then, forany T 2 S, T is not an admissible coalition for (N, >, t).

By condition (1.a) in Theorem 1, all efficient, consistent and individually rational
from equal division rules are maximal. Moreover, Remark 2 below states that non-
bossyness and independence of irrelevant agents follow from consistency.

Remark 2 Let f be a consistent rule. Then, f is independent of irrelevant agents and
non-bossy.

To show that the statement in Remark 2 holds, assume f is consistent. It follows
immediately that f is independent of irrelevant agents. To show that f is non-bossy,
consider a problem (N, >y, ?), an agenti € N and a preference Z; such that,

FilN, C=iy =nvip)s 1) = fi(N, (=1, = v 1) ey

Since f is consistent, for all j € N\{i},

fi(N, (=i, =np» 1) = fi(N\{i}, =gy £ — fi(N, (=i, =n\iy)» 1) and
Fi(N, (=0 =m0 = fi(N\{i} =y, t — filN, (= =iy D).

By (1), fi(N, (=i, =n\ip» ) = fj(N, (=}, =ny). t). Hence, f is non-bossy.

Second, we discuss now why extended uniform rules do not satisfy other appealing
properties.

As we have already discussed, extended uniform rules are not strategy-proof. This
requirement is too demanding because feasible rules have to depend strongly on agents’
intervals of participation which makes them extremely vulnerable to manipulations.

There are other reasonable extensions of Sonmez (1994)’s individual rationality
from equal division. For instance, when N is an admissible coalition, one could start
allocating the good by preliminary assigning the vector of upper bounds and then
decrease uniformly agents’ shares (as long as all lower bounds were satisfied) until
the total amount of the good would be distributed. This approach would give rise to
another set of similar rules. However, they would be different than those rules iden-
tified in this article since the two versions of the axiom are in general incompatible.
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To see that, consider the problem where N = {1,2}, + = 10 and R is any profile
with (I, p1,u1) = (2,6, 6) and (2, p2, uz) = (2, 10, 10). If a rule satisfies the two
versions of the axiom then agent 1 has to receive a share in the interval [5, 6] and agent
2 a share in [7, 10], which is unfeasible.!3

Thomson (1994a) characterizes the uniform rule in the division problem as the
unique single-valued selection satisfying individual rationality from equal division,
efficiency, bilateral consistency and M-continuity (a requirement needed to select
well-behaved rules from correspondences). However, it is not possible to replace con-
sistency in our Theorem 1 by bilateral consistency. The reason is that the choice of the
admissible coalition can be made according to bilateral consistency but it may fail to

satisfy consistency. For instance, consider the two rules F o' and F°” where o'! @) =i
foralli € Nand 02(1) =2,02%(2) = 1 and 62(j) = j forall j > 2 and define f as
follows. For all (N, =,t) € P,

ol . .
FIN = 1) = F Z(N, >, 1) ¥f#N Ts odd
FP (N, >=,t) if#N iseven.

It is easy to see that f satisfies bilateral consistency but it is not consistent.

The non-envy comparison cannot be made when agents’ sets of acceptable shares
are different. A natural conditional non-envy property would require that if agent i’s
share belongs to agent j’s interval of acceptable shares, then agent j should not want
to switch. Nevertheless, extended uniform rules do not satisfy conditional no-envy. To
see that, consider the problem (N, >, t) where N = {1, 2}, = 10, and R is any profile
with (I1, p1,u1) = (2, 10, 10) and (2, p2, u2) = (0, 10, 10). Any extended uniform
rule selects at this problem the vector (6, 4) where agent 2 conditionally envies agent
1. The different lower bounds generates asymmetric shares that make conditional envy
possible.

Third, the example used to prove that there is no efficient and anonymous rule [(1.2)
in the proof of Proposition 1] suggests that random rules may be useful to restore the
compatibility of efficiency with fairness properties (like ex-ante equal treatment of
equals). However, this approach would require to extend agents’ preferences on sure
shares to preferences on random shares. We leave for further research a systematic
analysis of random rules in this setup.

Finally, in some steps in the proofs of the theorems we use profiles > where agents’
intervals of acceptable shares depend on a small number ¢ > 0 and are degenerated
since foralli € N,[; = p; = u;. However, we could also choose ¢ > 0 in such a way
that for each i € N, >; could be characterized by (/;, p;, u;) with0 < [; < p; < u;.
However, the case [; = p; = u; makes the arguments more transparent.
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Appendix 1: Proof of Theorem 1
Al.1. Preliminaries

We first introduce the property of bilateral peaks-and-bounds onlyness. It says that
for problems with only two agents at which the set of the two agents is an admissi-
ble coalition, the rule depends only on the peaks and the bounds of the two agents’
preferences.
(BILATERAL PEAKS- AND- BOUNDS ONLY) A rule f is bilateral peaks-and-bounds
only if for any pair of problems (N, >, t) and (N, ', r) with [N| = 2, N € AC(N,
>, 1), and (/;, pi, u;) = (I, p;,u}) foreachi € N, then f(N,>,1) = f(N,>,1).
Before proving Theorem 1 we state and prove three lemmata. The proofs of lem-
mata 1 and 2 adapt to our setting the corresponding proofs of Lemmata 5 and 6 in

Dagan (1996).

Lemma 1 Let f be an efficient and consistent rule that satisfies individual rationality
from equal division. Then, f satisfies bilateral peaks-and-bounds onlyness.

Proof Let (N, =,t), (N*,>*,1t) € Pbesuchthat N = {i, j}, N* = {k,m}, {i, j} N
{k,m} = @, ===}, >j=>5,N € AC(N, >, 1),and N* € AC(N*, =*,1). Define
x = f(N UN* (>=,>=%),2t). Since N and N* are admissible at their respective
problems, N U N* € AC(N U N*, (>, =%), 2t).

In the rest of the proof of this lemma we make an abuse of notation and we take
X = 0 when x, = NP and x, appears in a sum. Thus, x; + x; + x + x,, = 2¢. Since
f is consistent,

Jillis kY, (=i =), 20~(xj+xm)) =x; and fi({i, kY, (=iy =5, 20— (xj+20m)) =Xk
Since f satisfies individual rationality from equal division,
filkis kY, (=i =), 2t = (xj + xm)) = fie(i kY, Gy 25, 26 — (x4 2xm)).

Thus, x; = xi. Similarly, we conclude that x; = x;,. Thus, x; +x; = x +x = 1.
By consistency,

filN, >, 1) = x; = x = fir(N*, =", 1) and
fj(N,i,t)ZXjIXmIfm(N*, Z*»t)~ 2
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Now, let >'= (> >’) be such that (I}, p;, u;) = (I;, p;, u;) and (I, p}, u’j) =
(lj, pj,uj). We want to show that f(N, >=,1) = f(N,>’,t). Define x' = f(N U
N*, (', >=%), 2t). Using arguments similar to those used above we can conclude that,

filN, =", 1) = x/ = x; = fi(N*, =*,1) and
fj(N > t)_x;_-x fm(N*ai*, )

Thus, f(N,>,t) = f(N, >/, ). O

Lemma 2 Let f be an efficient and consistent rule that satisfies individual rational-
ity from equal division and let ({i, j}, >=,t) € P be such that {i, j} is an admissible
coalition. Then, fi({i, j}, >=,t) = lx + Fr{i, j}, - li = 1) forall k € {i, j}.

Proof Let({i, j}, =, t) € Pbesuchthat {i, j} € AC({i, j}, =, t). Foreachk € {i, j},
define x; = Iy +min{e, uy —Ii}, where @ € Rissuch that x; +x; = ¢ (as in the defini-
tion of individual rationality from equal division applied to the problem ({i, j}, >, 1)).
We distinguish between the two rationing situations.

Consider the case p; + p; < t. Assume first that x; > py for all k € {i, j}. Since
f is efficient and satisfies individual rationality from equal division,

fildi, jY =0 = xp = b+ Fe(li, j}, =Lt =i — 1))

for all k € {i, j}. Without loss of generality assume now that x; < p;. Thus, r — x; =
x;j > pj.Byefficiency, f;({i, j}, >=,t) > p; > x;. Suppose that f;(N, >, t) > p;. We
can find > such that (I, p/, u’) = (I;, pi,u;) and x; >} f;(N,>,1). By Lemma I,
fildi, jy. =0 = fidi, j} (=}, =j),0). Let x{ = Il + min{a’, u} — I/} be as in
the definition of individual rationality from equal division as applied to the problem
({i, j}, (=, =), ). It is obvious that x| = x;. Hence, x; > f;({i, j}, (=}, =), 1),
which contradicts that f satisfies individual rationality from equal division at the prob-
1em({l .]} (>/7_j) t) Then fl({l ]}7_7 )_Pz _l +F({l .]}7_ ’t_l —1j )
and hence, f;({i, j}, >, 1) =1; + F;({i, j}, = Lp—1 —1; i)

A similar argument can be used to show that the desuable statement also holds
when p; + p; > t. O

Lemma 3 Let f be an efficient and consistent rule that satisfies individual rationality
from equal division. Let (N, >, t) be a problem at which N is an admissible coalition.
Then, for eachi € N, fi(N, =, 1) =i + F;(N,=',t =3,y 1))

Proof Let (N, =, t) be an arbitrary problem with N € AC(N, >, t). We proceed by
induction on |N|. If | N| = 2, the result follows from Lemma 2. Assume |N| > 2 and
suppose that the statement holds for all problems (N’, >/, ') with |[N'| < |N| and
N’ € AC(N', >, t'). We prove that it also holds for (N, >, t). Foreachi € N, define

GN= 0 =l + Fi (N2 = 3 1).

Since N is admissible, by individual rationality from equal division, > JE N Fi(y,
>,t) = t. To obtain a contradiction, suppose that f(N, >,t) # g(N, >, ). Then,
there exist i, j € N such that
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JilN, =, 1) > gi(N, =, 1) and f;(N, = 1) <g;(N,>=,1). 3)
Without loss of generality, assume that i = 1 and j = 2. Since f is consistent,

JitN, =, 1) = filtN\{1}, =n\y. £ = fi(N, =, 1)) foralli € N\{l}, and (4)
fi(N, =, 1) = fi(N\{2}, =2}, t — f2(N, =, 1)) forall k € N\{2}.

In Lemma 5 in the proof of Theorem 1 below we will show (without using this result)
that any extended uniform rule is consistent. Thus,

gi(N, =, 1) = gi(N\{1}, =mpy, 1 — g1(N, =, 1)) foralli € N\{l}, and (5)

By the induction hypothesis, for all i € N\{1},
SiN\{1}, =m1y, £ — iV, =, 1) = g (N\{1}, =m\y. £ — fi(N, =, 1), (6)

Since t — fi(N,>,t) < t — g1(N, >, ), the definition of g implies that for all
i € N\{1},

gl(N\{l}a :N\{l}at - fl (Nv zv t)) = gl(N\{1}7 EN\{I}, r— 81 (Na :a t)) (7)
Hence, by (4)—(7), fi(N, >=,1) < gi(N, =, t)foralli € N\{l}. Analogously, fx (N, >

,t) > gx(N, >, 1) for all k € N\{2}. Thus, f;(N,>,1t) = gi(N,>,t) foralli €
N\{1, 2}. Since f and g are consistent, for each i € {1, 2},

.fl(Nv i, t) = ‘fl(N\{lv 2}7 EN\{],Z}a r— Zje{l,z} fj(N5 za t))’ and
gi(N, =, 1) = g (N\{L, 2}, =m\(1.2) t — 2 jeq12) 8 (N, =, 1)).

By the induction hypothesis, f; (N, >=,t) = g;(N, >, t) foralli € {1, 2}, a contradic-
tion with (3). O

A1.2. Proof of the characterization
(=) Let f be an efficient and consistent rule that satisfies individual rationality from

equal division. We first show that f is an extended uniform rule. Let (N, >, t) be an
arbitrary problem. By consistency, for each i € cf (N, >=,1),

SN =0 = fi (N =0, 2o 1) ®)

Since cf(N, >, t) is admissible at (cf(N, >, 1), sz(N,:,),t) and f is efficient,
consistent and satisfies individual rationality from equal division we deduce, from
Lemma 3, that for all i € ¢/ (N, =,1),
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f; (cf(N, =)y Zef (N ) t)

1
— L+ F (Cf(N, =02 ot~ et ) zj) .

Hence, by (8), fi(N.=.1) =l + Fi(c/ (N, = 0). =Ly 0 = B cervomay )-
Moreover, for each i ¢ ¢/ (N, =, 1), fi(N,>,t) = NP. Thus, f is an extended
uniform rule.

To prove that (1.a) holds, let (N, >, t) be a problem at which N is an admissible
coalition and take any i € N. By individual rationality from equal division, f;(N, >
,1) =i I + min{a, u; — ;} € [I;, u;]. By definition of ¢/ (N, >, 1),i € ¢/ (N, =, 1).
Since i € N was arbitrary, cf(N, >,t) = N. Thus, (1.a) holds.

To prove that (1.b) holds, let (N, >, t) be a problem and consider any nonempty
S C N. Since f is consistent, f;(N, >,1) = f;j(S,>s,t — Z,-GCf(N):’,)\S fi(N, =
, 1)) foreach j € S. Now,

(S =50t = Picervmans filN. =)

= {7 es17 (S 25,1 = Sicorinmans iV, =.0) € 1, u;1)
={jeS|filN,= 1) ellju;l}
=c¢/ (N, =, H\nS.

Thus, (1.b) holds.

(<) Assume that f is an extended uniform rule that satisfies (1.a) and (1.b). We
want to show that f is efficient, consistent and satisfies individual rationality from
equal division. We do it by proving Lemmata 4-8 below.

Lemma 4 The rule F is efficient and consistent on the subdomain of problems
(N, >=,t) wherel; =0foralli € Nand N € AC(N, >, 1t).

Proof We first prove that F(N, >, t) is Pareto optimal by distinguishing between the
two rationing situations.

Assume first that ZjeN pj < t.Then, F;(N, >, t) = min{max{8, p;}, u;} for all
i € N.Letx = (x;)ieny € FA(N, >, ) be such that x; >; F;(N, >,t) foralli € N.
It is obvious that ZjeN x;j = t. We prove that x; = F;(N, >,t) foralli € N by
distinguishing among three possible cases.

Casel F;(N,>,t) = p;.Since x; >=; F;(N, >=,1),x; = p;.

Case2 Fi(N,>,t) =u;.Sincex; >; F;(N,>,t),x; < u;.Supposethatx; < u;.As
ZjeN xXj = ZjeN Fj(N,>,1) =t, there exists k € N such that x; > Fi(N, >, 1).
By its definition, Fy (N, >, t) can only take three different values. If Fy. (N, >, t) = uy
then, x;y > uy which contradicts that x € FA(N, >, ). If Fi(N, >,t) = pi then,
X; > px which contradicts that x; > Fr(N, >, ). Finally, if F; (N, >,f) = § and
Pk < B < ug then, B < xi. Since x € FA(N, >, t), xx < uy, which contradicts, by
(P.2), that x; >, Fx(N, =, t). Thus, x; = u;.
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Case3 Fi(N,>,t) = pand B > p; (if B = pi, apply Case 1 above). Since x; >;
F;(N,>,1),x; < B by (P2). Suppose that x; < 8. As ZjeN xj = ZjeN Fi(N,>
,1) = t, there exists k € N such that x; > Fy(N, >, t). Using arguments similar to
those already used in Case 2 we obtain a contradiction. Thus, x; = .

A similar argument can be used to show that F(N, >, 1) is Pareto optimal when
zjeN pj >t (and F;(N, >,t) = min{g, p;} foralli € N ).

To prove that F is consistent, it is sufficient to show that for all i € N\{k}, F;(N,
>, 1) = Fi(N\{k}, =n\x}, t — fx (N, >, 1)) for any arbitrary agent k € N. Again, we
distinguish between the two rationing situations.

Assume first that ZjeN pj < t.Then, F;(N, >, t) = min{max{8, p;}, u;} for all
i € N. Thus, p; < Fi(N,>=,r) foralli € N. Let k € N. Then, ZjeN\{k} pj <
2 jeni Fi(N, =, ). We distinguish between two possible cases.

Case 1 ZjeN\{k} pj < ZjeN\{k} Fi(N,>=,t) =t — Fi(N, >,1). Since

and F;(N\{k}, =n\ix},t — Fx(N, =, 1)) = min{max{p’, p;}, u;} where g’ is the
unique number satisfying

ZjeN\{k} min{max{B’, p;},u;} =1 — F(N, >, 1),
we deduce that 8 = B8’ and, for each i € N\{k}
Fi(N\{k}, =n\ky, t — Fi(N, =, 1)) = min{max{B, pi}, u;} = Fi(N, =, 1).

Case2 X vy Pj = Zjenviy Fi(N, =, 1) = t — Fx(N, =, 1). Then, by effi-
ciency of F, F;(N, >,t) = p; foralli € N\{k}. Moreover, for eachi € N\{k},

Fi(N\{k}, =n\(x}, t — Fx(N, >, 1)) = min{B, p;},
where B is the unique number satisfying

ZjeN\{k}min{ﬂ, pj}=t—F(N,>, 1) = ZjeN\{k} pPj-

Thus, 8 = max jen\(x1{p;}. Hence, for each i € N\{k},
Fi(N\{k}, =m\(k}> t — Fe(N, =, 1)) = p;.

The case 3y pj > t is similar and we omit it.

Lemma 5 The rule f is consistent.
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Proof Let (N, >,t) € Pand S C N. We have to show that for all i € S,

fi(N, =, 1) = fi(S, =s,t — ngcf(jv,:,;)\s fi(N,>=,1)).

It is sufficient to prove that it holds for |S| =n — 1. Letk € N and i € N\{k}. We
distinguish between two cases.

Casel i ¢ ¢/ (N, >, 1). Then, f;(N,>,t) = NP. By (1.b), ¢/ (N\{k}, > n\(t}, 1) =
¢/ (N, =, H)\{k}, where

;_[t ifk ¢ c/(N,>,1)

t — fr(N, >=,t) otherwise.
Hence, i ¢ ¢/ (N\{k}, >n\(}, 7) and then,
Ji(N\{k}, =n\iky» ) = NP = fi(N, >, 1).
Case2 i € ¢/ (N, =, t). Since by hypothesis f is an extended uniform rule,
[N =0 =1+ Fi(e! (N2 02l v ot = Dject v L)
By (1.b),i € ¢/ (N\{k}, >}, 1) = ¢/ (N, >, 1)\ {k}. Then,

Ji(N\{k}, =3\ 1)
=litF ( TN, 2 OMKY =0 (v ity T = Zjeed =) li)-

We consider two subcases.

Subcase 2.1 k ¢ cf(N, >,1). Then, fi(N,>,t) = NP and 7 = r. Now,

( TNz D\tk). = —Lf(N =ovkp E T 2jecl (N = 0\(k) l./')

=F,-( (N’—’t)’—cf(N>z)’ _zjeef(N,:,t)lj)'

Hence,

SitNA{kY, =mk), ) = fi(N, =, 1).

Subcase 2.2k € ¢/ (N, =, t). By Lemma 4, F is consistent on the smaller subdomain.
Thus, setting ¢/ = ¢/ (N, =, 1),

E <Cf9 iifv r— Zje(;f lj) (C \{k} >Cf\{k}’ - Zjecf l]
—Fuel 2l = S 1) ©)
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Since k € ¢/ and f is an extended uniform rule,

—le = Fi(¢f 2ot = B jeer 1) = = fiN, =), (10)

Now, by (9) and (10),

fi(N, = 1) =l + F; (cf, STy zj)
= Fi (M kb=l = Zeer by = (el =l 1 = 2 s 1)
=1+ Fy (/K] 2Lyt = jeerin b = SN, =00)
= fi (N\{k}, =y £ — fiu(N, =, 1)),

where the last equality follows from the definition of extended uniform rules. O
Lemma 6 The rule f satisfies individual rationality from equal division.

Proof Let (N, >, t) be such that N is an admissible coalition. By (1.a), cf (N, >,t) =
N. Since f is an extended uniform rule,

forall i € N. We will show that foralli € N,
filN, =, 1) =; l; + min{a, u; — [;},

where >y min{o, uj — 1} =1—3 1.
Assume first that 3,y pj <t.Then, 3 ,cn(pj —1j) <t — 2> ;cy1j. Now, for
eachi € N,

Fi(N, ="t =¥y 1)) = min{max{B, p; — li}, ui —Ii},

where B is the unique number satisfying ZjeN min{max{B, p; — l;j},u; —I;} =
t =2 jen!j- Then, o > f because

ZjeN min{max{a, p; —l;}, u; —1;} > ZjeN minfo, u; — 1} =1 — ZjeN l;.

Leti € N. We consider separately the following three cases:

Case 1 min{maX{IBa pi _li}7 uj _ll} = pi _li'Then’ .fl(N9 2, t) = pi andﬁ(Ns i
1) i:i li + min{a, u; —I;}.

Case 2 min{max{g, p; — l;},u; — ;} = u; —l; > p; — ;. Then,

min{a, u; — li} = Uu; — li
JitN, =, ) =i + (w; — ;) =u;, and

l; + min{a, u; — [;} = u;.
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Thus, f; (N, >=,t) ~; l; + min{o, u; — [;}.
Case 3 min{max{g, p; — l;},u; — l;} = B > p; — l;. We consider two subcases.

Subcase 3.1 a < u; — l;. Then,

min{o, u; — ;} = «,
JilN,=,t) =1; + B, and
li + min{a, u; — ;} =1; + «.

Sincel; +a > 1; + B > p;i, by (P2), fi(N, =, 1) =; [; + min{a, u; — I;}.
Subcase 3.2 o > u; — l;. Then,

min{o, u; — [} = u; —1;,
fi(N,>=,t)=1; + B, and

li + min{a, u; — I;} = 1; +u; — l; = u;.

Since p; < i + B = fi(N, =, 1) < u;, by (P.2), fi(N, =, 1) =; l; + min{a, u; — I;}.
The case ZjeN pj >t is similar and we omit it. O

Lemma 7 The rule f is efficient.

Proof Suppose not. Then, there exist (N, >,1) € P, x € FA(N,>,t),and j € N
such that x; >; fi(N,>,t) foralli € N and x; >; f;j(N,>,t). Since x; >;
fi(N,>=,t),j € S(x) (the set of agents k € N such that [y < x; < uy) and hence
S(x) # @. Moreover, ¢/ (N, >, 1) C S(x).Since S(x) # & is an admissible coalition
at (N, >, 1), ¢/ (N, =, 1) # @.

Since f satisfies consistency and ¢S (N, =, 1) C Skx), fi(S(x), =sx), )
= fi(N,>,r) foralli € S(x). By (1L.a), ¢/ (S(x), >s@x),1) = S(x). By (1.b),
cl (S(x), =s@), 1) = ¢/ (N, >=,1) N S(x). Thus, S(x) = ¢/ (N, >,1). Now (x; —
li)iect (N> 1 Pareto dominates

!
(Fi(cf(N, >, 1), (Ej)jecf(zv,:,;)v r— Zjecf(N,z,t) lj)),'ecf(N,:,,),
which contradicts Lemma 4. O
This finishes the proof of the characterization in Theorem 1.
A1.3. Independence of the axioms
Let o : N — N be the identity order; i.e., (i) =i foralli € N.
Consider the rule f1 defined as follows. Given (N, =, 1) € P, set cf1 (N, >=,t) =

cF (N, >, 1) and

NP ifi ¢ c/ (N, =, 1)

1
(N, =, 1) =
Jit ) {li—i-min{oz,ui—li} ifi ec! (N, >,1),
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where o € R satisfies szCfl Nom0) min{o, u; —[;} =1t — Zjecﬂ(N’z’[) l;. It is
not difficult to prove that f! is consistent, satisfies individual rationality from equal
division, but it is not efficient.

Consider the rule f2 defined as follows. Given (N, >, t) € P, set cf2 (N,>,t) =
cF(N, =, 1) and

NP iti ¢ e (N, =, 1)

2 —
f5(N,>,t) = e >
F= [D?(sz(N,>,l),>-cf2( ifi ecfz(N,_,l)’

N,z,t)’ t)

o (. f?
where D7 (¢/(N, =, 1), = 2 5

by the order ¢ in the problem (cfZ(N, >, 1), =z (Nost)?
torial rule agents select, following the order o, the shares they most prefer, as long as
there is enough amount of the good (we skip its formal definition). It is not difficult
to prove that f2 is efficient, consistent but it is not individually rational from equal
division.

Let o' : N — N be any order different from o. Consider the rule > defined as
follows. First, define f Lo’ similarly to f! but using order ¢’ instead of o'. Now, for
all (N, >,1) € P,

t) denotes the sequential dictatorial rule induced

t). In the sequential dicta-

1 . .
(N,=,t) if |N]is odd
P =n=110 o
Y9 (N, >=,t) if |[N|is even.
It is not difficult to prove that £3 is efficient, satisfies individual rationality from equal
division but it is not consistent.

Appendix 2: Proof of Theorem 2
A2.1. Proof of the characterization

(<) We first prove that if f is an extended uniform rule with the property that there
exists a monotonic order p on A such that (2.a) holds then, f is efficient, consis-
tent, individually rational from equal division and satisfies independence of irrelevant
coalitions. We do it by proving Lemmata 8 and 9 below.

Lemma 8 The rule f is efficient, consistent and satisfies individual rationality from
equal division.

Proof By Theorem 1, it is sufficient to prove that f satisfies (1.a) and (1.b). We first
show that f satisfies (1.a). Let (N, >, ) € P be such that N is admissible and let p be
the monotonic order on N associated to f. By property (i) of p, NpS forall S C N.
Thus, ¢/ (N, >, 1) = N.

Leti € N. Using an iterated argument it is sufficient to show that f satisfies (1.b)
for S = N\{i}. Let (N, >, r) € P. We consider separately the following two cases.
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Casel i ¢ ¢/ (N, =,1). Then, f;(N, >, t) = NP. Obviously,
c/ (N, =, 1) € AC(N\{i}, =n\(iy. 1)
and
AC(N\{i}, =m@i}. 1) S AC(N, =, 1).

By (2.2), ¢/ (N, >, t)pS forall S € AC(N\{i}, >n\(i}» )\’ (N, >, 1), which means
that

T (N\{i}, =nviys 1) = ¢/ (N, =, 1)
=c/ (N, =, O\{i).

Case2 i € ¢/ (N, >, ). Then, fi(N, =,t) € [l;, u;]. It is easy to see that
S e AC(N\{i}, =n\(i}, t — fi(N, =, 1)) implies SU {i} € AC(N, >,1). (11)

Moreover, cf(N, >, O\{i} € AC(N\{i}, =n\(i}, t— fi (N, =, 1)) holds. We prove that
(! (N =, )\{i})pS forall § € ACN\{i}. =ni).t — fitN. = O\ (N, >, )\
{i}). Suppose not; there exists S’ € AC(N\{i}, >N\{i}»t — fi(N, >, 1)) such that
S’ p(c! (N, =, H\{i}). By (11), §' U {i} € AC(N, =, 1). By property (ii) of p, (S’ U
{iDpc! (N, =, 1), which contradicts (2.a). o

Lemma 9 The rule f satisfies independence of irrelevant coalitions.

Proof Let (N, >,t) and (N',>,t") be any two problems with the property that
AC(N', =", 1) CAC(N, >, t)andc/ (N, =, 1) € AC(N’, =',t'). By (2.a), forall S €
AC(N, =, HO\c¢/ (N, =, 1), ¢/ (N, >,1)pS holds. Since AC(N’, >', ') € AC(N, >
,t)and ¢/ (N, =,1) € AN, =, 1), ¢/ (N, >,0)pS forall S € AC(N’, =", t")\¢/
(N,>,1).By 2a),c/ (N, =",y =c/ (N, =,1). o

(=) Let f be an efficient and consistent rule that satisfies individual rationality
from equal division and independent of irrelevant coalitions. By Theorem 1, f is an
extended uniform rule. We want to show that there exists a monotonic order p on N
such that f satisfies (2.a).

We first define (using f) a binary relation p on A Let S, S’ € . Three cases are
possible.

Casel S O 5. Then, set SpS’.

Case2 S’ O S. Then, set §'pS.
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Case 3 There exist agents j € S\S" and j’ € §’\S. Consider any problem (N, >, 1)
where S, S’ € N and foreachi € N,[; = p; = u;, and

e ifiesns
&2 ifi € S\(S'U{j})
) r—elSnS | =S\ U{jhl ifi=
Pi=1¢3 ifi e S\(SU{j'})
t—elSNS |-\ U ifi=j
e ifi e N\(SUS).

Moreover, we choose ¢ > 0 small enough to make sure that 0 < p; < ¢t foralli € N
and AC(N, =,1) = {@, §, S’'}. Observe that such ¢ > 0 exists. Thus, cf(N, >,1) €
(S, 8'}. Then, if ¢/ (N, =, 1) = S set SpS’ and if ¢/ (N, =, 1) = § set §'pS.

Since f satisfies independence of irrelevant coalitions, p does not depend on
(N, >, t). Namely, let (N’, >, ') be such that AC(N’, >',t") = {@, S, §’}. Then,
cf(N', =", t') = ¢/ (N, =, t). Thus, p is well defined.

Lemma 10 If SpS" and T C SN S’ then, (S\T)p(S'\T).

Proof If § D S’ then, the statement follows immediately. Assume S\S' # @ and
S\S # @hold. Leti € T c SN S and (N, >, 1) be a problem as in the defini-
tion of p applied to S and §’. Thus, AC(N, >,1) = {&, S, 5"}, ¢/ (N, =, 1) = S and
AC(N\{i}, =m\(y. 1) = {2, S\{i}, S'\{i}}, where again,
;_[z ifk ¢ c/(N,>,1)
t — fr(N, >,t) otherwise.

Since f satisfies (1.b),
T (N\LiY, =iy D) = ¢/ (N, = D\(i) = S\ (i)
Let (N, >/, t) be as in the definition of p applied to S\{i} and S"\{i}. Thus,
AC(N, >, 1) = {2, S\{i}, S'"\{i}} = AC(N\{i}, =n\(i), 1)

Since f satisfies independence of irrelevant coalitions and cf (N\{i}, = N\, 1) =
S\{i}, ¢/ (N, =', 1) = S\{i}. Thus, (S\{i})p(S'\{i}). Repeating successively the same

argument for each agent in 7'\ {i} it follows that (S\T)p(S'\T). O

Lemma 11 The binary relation p on N is complete, antisymmetric, and satisfies
properties (i) and (ii).

Proof By definition, p is a complete and antisymmetric binary relation. Property (i)
holds trivially. Suppose that p does not satisfy property (ii). Then, thereexist S, 7 C N
andi € N\(SUT) such that SpT but (S U {i})p(T U {i}) does not hold. Since p is
complete, (T U {i})p(S U {i}). By Lemma 10, TpS, which is a contradiction. O

Lemma 12 The rule f satisfies (2.a).
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Proof Let S € AC(N, >, t)\cf(N, >, t). We want to prove that cf(N, >, 1)pS. We
distinguish among the following three cases.

Casel S C ¢/ (N, >,t). Then ¢/ (N, >, t)pS by definition of p.

Fig. 2

S/

Case2 ¢/ (N,>,r) C S. We will obtain a contradiction. Consider the problem
(S, >s,1t). Since S € AC(N, >=,t), S € AC(S, >g,1). By Theorem 1, f satisfies
(1.a). Thus, ¢/ (S, >s,1) = S. Since ¢/ (N, =,1) € S, ¢/ (N, =, 1) € AC(S, =5, 1).
Moreover, AC(S, =s,1) € AC(N, =, t). Since f satisfies independence of irrelevant
coalitions, cf(S, >s,1) = cf(N, >, 1), a contradiction with cf(S, >s,1) = S.

Case3 ¢/ (N, =, 0)\S # @ and S\c/ (N, =,1) # @. Let (N, =, ') be as in the
definition of p applied to the sets ¢/ (N, =, ) and S. Thus, AC(N, >', ") = {c¢/ (N,
>, 1), S}. Since f satisfies independence of irrelevant coalitions, cf (N,>",t) = cf
(N, >, 1). By the definition of p, ¢/ (N, =, )p. o

Lemma 13 below states that p is transitive, the only remaining property to be proven
in order to finish the proof of the characterization of Theorem 2.

Lemma 13 The binary relation p on N is transitive.

Proof To simplify the notation, given a family {X1, X2, ..., Xg} of subsets of N,
we denote Ulexk by X X5 - Xg. Assume that SpS’ and §'pS”. We must prove
that SpS”. We decompose S, ', and S” according to Fig. 2, with S = ABCG, S’ =
CDEG and §” = AEFG, and prove Claims 1-5 below.

Claim 1 Assume that AC(N, >,t) = {Xk}le and for each k # 1, there exists ji
such that X j, p Xy. Then, X1p Xy, for each k # 1.

Proof Since AC(N, =, 1) # &, we have that cf(N, >,t) € AC(N,>,1). Letk # 1
and assume X j, o Xy. Since f satisfies (2.a), cf(N, >,1) # X. Thus, cf(N, >, 1) =
X1. Since f satisfies (2.a), X1p Xy for each k # 1. O

Claim 2 Assume that B # &, D # &, and F # &. Then, SpS” .

Proof By assumption, for each X € {B, D, F}, we can find ix € X. Consider any
problem (N, >, 1) where BDF C N and foralli € N,Il; = p; = u; and
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& ifie G
g2 ifieC
&3 ifi e A
&t ifi e E
& ifi € B\{ip}
pi=11—¢lG| —*C| —&|A| — & |B\{ig}| ifi=ip
&0 ifi € D\{ip)}
1 —¢|G| — €%|C| — e*|E| — °|D\{ip}| ifi=ip
e’ ifi € F\{ir}
1 —¢|G| — &%|C| — e*|E| — &7 |F\{ir}| ifi=if
| 2 otherwise.
For I3 > 0 sufficiently small, AC(N,

= 1) =1{2,8,5,5"). By Claim 1, ¢/ (N, =, 1) = §. Since f satisfies (2.a), SpS".
O

Claim 3 Let U,U’, V, V' be such that X N Y = & for each X,Y € {U,U’,V,V'}
with X # Y and assume UpU' and VpV'. Then, UVpU'V'.

Proof Since UpU’ and VpV’', U # & and V # & hold. We consider four cases
separately.

Casel U’ = V' = @. Obviously, UVp@.

Case2 U’ # @and V' # @.Foreach X € {U,U’,V, V'}, take ix € X. Consider
any problem (N, >, 3) where UU'VV’' C N, and foralli € N ,[; = p; = u; and

e ifi € U\{iy}
2 —elU\liy}l ifi=iy
g2 ifi € U'\{iy}
2 — 2|\ U\{iyy}| ifi =iy
pi=1¢ ifi € V\{iy}
1 -\ V\{iy}| ifi=iy
e ifi € V'\{iy'}
1 — e V\{iy/}| ifi =iy
| 4 otherwise.

It is easy to see that, for ¢ > 0 is sufficiently small, AC(N, =,3) = {g, UV, UV’,
U'V,U’'V’}. Since UpU’ and, by Lemma 11, p satisfies property (ii), UVpU'V and
UV'pU'V’. Since VpV’, and again by property (ii), UVpUV’. Claim 1 implies
UvpU'v'.

Case3 U’ # @ and V' = @. Foreach X € {U, U’, V}, take ix € X. Consider any

problem (N, >, 1) where UU'V C N foralli € N\{iy},l; = p; = u;, andfore > 0
small enough,
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€ ifi € U\{iy}
g2 ifi € U'\{iy}
pi=11—-XU\{ip}| ifi=iy
&3 ifieV
4 otherwise,

and/;, = 1—e|U\{iv}|—€3|V] andu;;, = 1—¢|U\{iy}|.Now, AC(N, =, 1) =U'U
{X|UcCX cUV}.Since UpU’ and UVpX foreach X € AC(N, >, D\{UV,U’},
by Claim 1, UVpU'.

Cased4 U’ = @ and V' # &. Since the argument is symmetric to the previous case,
we omit it. O

Claim 4 Let U,V be suchthat U NV = & and UpV. Then, for each X C V,UpX.

Proof If X = @, then UpX follows from property (i) of p. Assume X # & and
take iy € X and iy € U. Consider any problem (N, >, 1) with UV C N and for all
i € N\{ix},l; = pi = u; and for ¢ > 0 small enough,

& ifi e U\{iy}
1 —elU\{iy}| ifi=iy

pi = g2 ifi € X\{ix}
&3 ifi e V\X
4 otherwise,

andl;, = 1—&?|X\{ix}|—&}|V\X|and u;, = 1—¢&2|X\{ix}|. Now AC(N, >, 1) =
{o,UU{Y | X CY C V}}. Since UpV and VpY foreach Y € A(N, >, D\{V, U}
we conclude, by Claim 1, that Up X. O

Claim 5§ Assume that for each X,Y € {A,B,C,D,E,F},XNY = &, ABpDE,
and CDpAF. Then, ABCDpDEAF.

Proof We first prove that if B # @, D # &, and F # &, then ABCDpDEAF.
Let S = ABC,S" = CDE, and S” = AEF. Since ABoDE,CDpAF, and p
satisfies property (ii), S = ABCpCDE = S and S’ = CDEpAEF = S". By
Claim 2, § = ABCpAEF = S”. By Lemma 10, BCpEF. By property (ii) of
p, ABCDpDEAF.

We now prove that if C # &, A # @, and E # &, then ABCDpDEAF. Let
S =BCD,S = ABF, and S” = DEF. Since ABpDE,CDpAF, and p satisfies
property (ii), S’ = ABFpDEF = §” and S = BpABF = §’. By Claim 2, § =
CDBpDEF = S".By Lemma 10, BCpoEF. By property (ii) of p, ABCDpDEAF.

We proceed by considering several cases:

Casel A =9,D = &.Thus, BoE and CpF. Then, BCpE F follows from Claim 3
and hence ABCDpDEAF.

Case2 A = @,D # ©&. Thus, BoDE and CDpF. Since BoDE,B # &. We
consider two subcases.
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Subcase 2.1 F # &.Since B # &, D # &, and F # @, ABCDpDEAF holds.
Subcase 2.2 F = @. Thus, BoDE and CpD. By property (ii) of p, it is sufficient to
prove that BCpE. Since BpDE, by Claim 4, BpE. Since Cp< and Claim 3 holds,
BCpE. Thus, ABCDpDEAF.

Case3 A # o, D = @. It is symmetric to Case 2.

Cased A # &, D # &. We consider three subcases.

Subcase 4.1 B # O, F # &.Since B # @, D # &, and F # &, ABCDpDEAF
holds.

Subcase 4.2 B # &, F = &. Thus, ABpDE and CDpA. By property (ii) of p, itis
sufficient to prove that Bp E. First, if E = & it holds trivially. Second, assume E # @&
and C # & hold. Then, and since C # &, A # &, and E # &, ABCDpDEAF
holds. Finally, assume £ # @ and C = & hold. Suppose EpB. By Claim 3, DEpAB,
which contradicts that ABpDE.

Subcase 4.3 B = &. Thus, ApDE and C Dp A F. We first prove that C # &. Suppose
not. Then, DpAF. By Claim 4, DpA. Since ApDE, and by Claim 4 again, ApD,
which contradicts the antisymmetry of p. Hence, C # <. First, assume £ = O.
Thus, ApD and CDpAF. By property (ii) of p, it is sufficient to prove that CpF.
Suppose not. Then, FpC. Since Ap D and Claim 3, FApC D, which contradicts that p
is antisymmetric and CDpAF. Second, assume E # @. Since C # &, A # &, and
E # &, ABCDpDEAF holds. O

To conclude with the proof of Lemma 13, assume SpS’ and S'pS”. We want to
show that SpS” holds. Since SpS’, ABCGpCDEG (see Fig. 2). By Lemma 10,
ABpDE. Since S'pS”",CDEGpAEFG. By Lemma 10, CDpAF. By Claim 5,
ABCDpDEAF. By Lemma 10, BCpEF. By property (ii) of p, S = BCAGp
EFAG =5". O

A2.2. The independence of the axioms

Let o be such that o(i) = i forall i € N. Given S, T € N define 15597 ¢ RSVT a5
follows:

IS’SUTz 1 ifies
i 0 ifi¢s.

Define 17-5YT analogously. We define the order p on N. Forany S, T e N, S # T,
set SpT if and only if 15597 is strictly larger, according to the lexicographic order,
than 17-5Y7 Now, it is easy to see that for any problem (N, >, 1), ¢cf* (N, >, 1) €
AC(N, >, 1) and ¢ (N, =, t)pS for all S € AC(N, =, )\cF" (N, =, 1). It is not
difficult to prove that, as defined in A1.3 of Appendix 1,

1. f!is consistent, individually rational from equal division and satisfies indepen-
dence of irrelevant coalitions but it is not efficient;

2. f?is efficient, consistent and satisfies independence of irrelevant coalitions but it
is not individually rational from equal division; and
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3. f3is efficient and individually rational from equal division and satisfies indepen-
dence of irrelevant coalitions but it is not consistent.

We define £+ as follows. Let o’ be the order in which agent 1 is always the last and
the other agents are ordered as in o. Now, for all (N, >=,t) € P,

4 F(N,=,t) ifl1 € Nand p; = 1
> 1) =
fIN, =z D) [ F°(N,>,t) otherwise.
It is not difficult to prove that f* is efficient, consistent, individually rational from
equal division but it does not independence of irrelevant coalitions.

Appendix 3: Proof of Theorem 3
A3.1. Proof of the characterization

(<) Let o0 : N — N be an order. We first prove that the extended uniform rule
F° is efficient, consistent, individually rational from equal division and satisfies order
priority with respect to o. We do it in Lemmata 14 and 15 below. In order to simplify
the notation, assume o (i) = i foralli € N.

Lemma 14 The extended uniform rule F° is efficient, consistent and individually
rational from equal division.

Proof By Theorem 1, it is sufficient to prove that F° satisfies (1.a) and (1.b). By
its definition, F'¢ satisfies (1.a). To show that F? also satisfies (1.b), consider any
problem (N, >, 1) and leti € N be arbitrary. Foreach 1 < j <n —1, let X’ J denote
the sets X/ as in the definition of F° when the procedure is applied to the problem
(N\{i}, =n\(i}» 1), Where

T t if F7(N,>,t) =NP
|t = F7(N,>,t) otherwise.

We will prove that
N, =, O\fi} e X7 foralll <j<n-—1. (12)

Observe that (1.b) would follow because (12) and |X”~!| = 1 imply that cFO(N, =
,HO\{i} = X"~V and hence, ¢/ (N\{i}, =), 1) = ¢ (N, =, £)\{i}. To prove (12)
we consider separately two cases.

Casel F7(N,>,1t) € [l;,u;]. Thus, i € ¢/ (N, =, 1). We first mention two state-
ments:

(s1) Let S € AC(N\{i}, =n\(iy, t — F{ (N, =, 1)). Then, >, ¢ 1j <t — F7(N, =

1) < ZjeS u . Hence, Z,iesu{i}lj <t < ZjeSU{i}”j' Namely, S U {i} €
AC(N, >, 1).
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(s2) LetS € AC(N, >, t)besuchthati € S and thereexists (x;) jes € FA(S, >g,1)
such that x; = F7 (N, >, t). Thus, S\{i} € AC(N\{i}, =n\p},t — F7 (N, >
,1).

Since ¢’ (N, =, 1) € XY = AC(N, >, t) and (s2) holds,
FT (N, =, D\{i} € X0 = AC(N\ (i}, =w\pi)» £ — FZ (N, =, 1)).

We now prove that cf’ (N, =, H\{i} € X'/ forall 1 < Jj < n—1. We do it for
j =1, the first step of the procedure (the other steps are similar and we omit them).
We consider two subcases.

Subcase 1.1 For each S € X°, 1 ¢ S. Then X! = X°. Suppose that 1 € S for
some S € X7, By (s1), S U {i} € X°, which is a contradiction. Then, for each
Se X 1¢S. Hence X' = X0 and ¢ (N, =, )\{i} € X"".

Subcase 1.2 There exists S € X" such that 1 € S. Then, X! = {§ € X°|1 € §}.
Again, we consider two subcases.

Subcase 1.2.1i # 1. Since cF* (N, =, 1) € X', by (s2), 1 € (N, =, H)\{i} € X°.
Now X' = {S € X’°|1 € $} and hence ¢7* (N, =, 1)\{i} € X'\

Subcase 1.2.2 i = 1. In this case we cannot compute X'!. After X’ we must compute
X%, We prove that cf(N, =, D\{i} € X2, We again consider two subcases.

Subcase 1.2.2.1 For each S € X!,2 ¢ S. Then X> = X'. Suppose that 2 € § for
some S € X. By (s1),SU {1} € XY, which is a contradiction. Then, for each
Se X0 2¢S8 Hence X = X and ¢F* (N, =, H)\{1} € X2,

Subcase 1.2.2.2 There exists S € X! such that 2 € S. Then X% = {S € X2|2 € S}.
Since ¢ (N, =, 1) € X2, by (s2),2 € ¢ (N, =, H)\{1} € X°. Now X? = (S €
X2 € §} and hence ¢F* (N, =, )\ {1} € X2.

Case 2 F;’(N, >=,t) ¢ [li, u;]. Then, Fi"(N, >,t) = NPandi ¢ cf(N, =, 0). It
is easy to see that AC(N\{i}, =n\(i}, 1) = {S € AC(N,>,1) | i ¢ S}. Hence,
cF’ (N, >=,1) € X, Using arguments similar to those used in Case 1, we can prove
that 7 (N, =, 1) € X" foralll1 < j <n —1. O

Lemma 15 The extended uniform rule F° satisfies order priority with respect to .

Proof Leti € Nbesuchthati ¢ ¢ (N, =, t)andc” (N, =, )N{i+1,...,n} # .
We must prove that there is no admissible coalition containing {1, ...,i} N cF? (N, >
, ). To obtain a contradiction, let S be an admissible coalition containing {1, ...,i}N
P (N, =,1). Let j € N.If there exists S’ € X/~! such that j € §’, then X/ =
(T € X/=V| j e T}). Since, ¥ (N, =, 1) = X" ¢ X/, j € ¢F"(N, =, 1). Thus, if
ject (N, = 0,{T e X)7'| j eT}=oand X/ = X/~ We now prove that
S e X/ forall 1 < j < i. We prove it by induction. First, § € X° holds and let
1 <j <i.Assumethat§ € X/=1. we prove that S € X/. We distinguish between
two possible cases.

Casel j ¢ ¢’ (N, >, 1). Thus, X/ = X/~!, which means that S € X/.
Case2 j € CFG(N, >, 1). Thus, X/ = {T € x/-! | jeT}and S € X/ because
(,....,i}NcF (N, =, 1) C 8.
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Thus, i € S € X, which means thati € ¢f 7 (N, =, t). But this contradicts the initial
assumption that i ¢ cf’ (N, =,1). |

(=) Let f be an efficient and consistent rule that satisfies individual rationality from
equal division and order priority with respect to o. By Theorem 1, f is an extended
uniform rule. Lemma 16 below finishes with the proof of the characterization in
Theorem 3.

Lemma 16 Let (N, >, t) be a problem. Then, cf(N, >,1) = cF’ (N, =,1).

Proof By definition of F?, ¢f° (N, >,1) = X". We now prove that if f satisfies
order priority with respect to o, then cf (N, >, t) = X". We show that foreachi € N,
iect (N, >, r)ifandonly ifi € X". Assume, without loss of generality, thato (i) = i
for all i € N. We proceed by induction on the index of the agents. If there exists an
admissible coalition S such that 1 € S, then X' = {S € AC(N,>=,1) | 1 € §}. In
this case 1 € X" because X" C X1. If there does not exist an admissible coalition S
such that 1 € S, then X! = AC(N, =, 1). In this case, 1 ¢ X". Since f satisfies order
priority with respect to o, it is easy to see that 1 € ¢/ (N, >, t) if and only if there
exists an admissible coalition S such that 1 € S.

Assume that forall j <i <n,j € ¢/ (N, =, 1) if and only if j € X". We prove
thati € ¢/ (N, >=,t)ifand only if i € X". Using arguments similar to those used with
agent 1 we can prove that i € X" if and only if there exists an admissible coalition
S € X'~ guch thati € S. We now prove that i € cf(N, >, t) if and only if there
exists an admissible coalition S € X! such thati € S.

Assume i € ¢/ (N,>,1) and let S = ¢/ (N, >, 1). By definition, ¢l (N, =, 1) is
admissible. By induction hypothesis, {1, ...,i — l}ﬁcf(N, =n={1,...,i—1}N
X". Thus, ¢/ (N, >,1) € X'~

Assume that there exists an admissible coalition S € X’~! such thati € S. By
induction hypothesis, {1,...,i — 1} N/ (N,>,1) = {1,...,i — 1} N X". Since
{1,...,i}NX" C S, S is an admissible coalition containing {1, ..., i} ﬂcf(N, >, 1).
Since f satisfies order priority with respectto o, i € ¢/ (N, =, 1). O

A3.2. The independence of the axioms

Assume, by simplicity, that o (i) = i for all i € N. We define f7 as follows. Given
S € AC(N, >, t), define ID;7 (S, >, t) as the share obtained by i when agents select
sequentially, following the order o, the share they prefer most corresponding to fea-
sible and individually rational from equal division allocations (we avoid the technical
definition). Given (N, =, 1), set ¢/ (N, =, 1) = ¢f" (N, =, t) and fP(N,>,t) =NP
for each i ¢ cfS(N, >, 1) and for each i € cfS(N, >, 1),

FE ™ (N2 1), mere (y e D) i1 (N, =, 0)] s odd
IDY (cF" (N, =, 1), = ro Ny D) if |cF (N, =, t)| is even.

[A(N, = 1) = [
It is not difficult to show that:
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1. Therule f! is consistent, individually rational from equal division and satisfies
order priority with respect to o, but it is not efficient.

2. The rule f? is efficient, consistent and satisfies order priority with respect to o,
but it is not individually rational from equal division.

3. Any extended uniform rule F o' with o’ # o is efficient, consistent and individu-
ally rational from equal division, but it does not satisfy order priority with respect
too.

4. The rule f7 is efficient, individually rational from equal division and satisfies
order priority with respect to o, but it is not consistent.
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